HDU 5889 Barricade【BFS + 最小割】

题目链接:

http://acm.split.hdu.edu.cn/showproblem.php?pid=5889

题意:

给定无向图,要求在所有最短路上设置一个路障,使得无论走那条最短路都会遇到路障,问最小花费。

分析:

很裸的最短路上的最小割。把最短路拿出来重新建图,注意新建的是有向图(wa了超级久),然后跑一遍最小割即可。
在求最短路的时候,最初很傻逼的用$vector$保存每个结点的爸爸们QAQ,其实只要正着求一遍bfs,再倒着求一遍,找到满足$d2[u] + d1[v] + 1 = d1[n]$的点即可。
还有一种罗大神的方法,把所有在最短路上即满足$d[v] = d[u] + 1$的点都拿出来建图,因为求得是$1到n$的最大流,所以不在从$1到n$的最短路上也没有影响,这样只要$bfs$一次即可。

代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
/*************************************************************************
> File Name: 1011.cpp
> Author: jiangyuzhu
> Mail: 834138558@qq.com
> Created Time: 2016/9/17 12:40:35
************************************************************************/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#include<set>
#include<map>
#include<algorithm>
using namespace std;
const int maxn = 2e4 + 5, maxm = 4e5 + 5, INF = 0x3f3f3f3f;
struct edge{int to, cap, rev, flow;}e[maxm];
int d[maxm], iter[maxm];
int s, t;
struct EDGE{
int to, next;
int from;
int val;
bool flag;
}edges[maxm];
vector<edge>G[maxm * 2];
int head[maxn];
int tot;
void init()
{
for(int i = 0; i < maxn; i++) G[i].clear();
memset(head, -1, sizeof(head));
tot = 0;
}
void Addedge(int from, int to, int cap)
{
G[from].push_back((edge){to, cap, G[to].size(), 0});
G[to].push_back((edge){from, 0, G[from].size()-1, 0});
}
void bfs()
{
memset(d, -1, sizeof(d));
queue<int>q;
d[s] = 0;
q.push(s);
while(!q.empty()){
int v = q.front();q.pop();
for(int i = 0; i < G[v].size(); i++){
edge &e = G[v][i];
if(e.cap > e.flow && d[e.to] == -1){
d[e.to] = d[v] + 1;
q.push(e.to);
}
}
}
}
int dfs(int v, int f)
{
if(v == t) return f;
for(int &i = iter[v]; i < G[v].size(); i++){
edge &e = G[v][i];
if(e.cap > e.flow && d[v] == d[e.to] - 1){
int tf = dfs(e.to, min(f, e.cap - e.flow));
if(tf > 0){
e.flow += tf;
G[e.to][e.rev].flow -= tf;
return tf;
}
}
}
return 0;
}
int max_flow()
{
int flow = 0;
for(;;){
bfs();
if(d[t]<0) return flow;
memset(iter, 0, sizeof(iter));
int f;
while((f = dfs(s, INF))>0){
flow += f;
}
}
}
void addedge(int u, int v, int val)
{
edges[tot].flag = false;
edges[tot].to = v;
edges[tot].from = u;
edges[tot].val = val;
edges[tot].next = head[u];
head[u] = tot++;
}
int d1[maxn], vis[maxn], d2[maxn];
void Bfs(int n)
{
memset(d1, 0x3f, sizeof(d1));
memset(vis, false, sizeof(vis));
queue<int>q;
q.push(1);
d1[1] = 0;
vis[1] = true;
while(!q.empty()){
int u = q.front(); q.pop();
for(int i = head[u]; i != -1; i = edges[i].next){
int v = edges[i].to;
if(d1[v] < d1[u] + 1 || vis[v]) continue;
d1[v] = d1[u] + 1;
vis[v] = true;
q.push(v);
}
}
memset(vis, false, sizeof(vis));
memset(d2, 0x3f, sizeof(d2));
while(!q.empty()) q.pop();
q.push(n);
d2[n] = 0;
vis[n] = true;
while(!q.empty()){
int u = q.front(); q.pop();
for(int i = head[u]; i != -1; i = edges[i].next){
int v = edges[i].to;
if(d2[v] < d2[u] + 1 || vis[v]) continue;
d2[v] = d2[u] + 1;
vis[v] = true;
q.push(v);
}
}
for(int i = 0; i < tot; ++i){
int u = edges[i].from, v = edges[i].to;
if(d1[u] + d2[v] + 1 == d1[n] && d1[v] == d1[u] + 1){
Addedge(u, v, edges[i].val);
}
}
}
int main (void)
{
int T;scanf("%d", &T);
while(T--){
int n, m;scanf("%d%d", &n, &m);
int u, v, x;
init();
for(int i = 0; i < m; i++){
scanf("%d%d%d", &u, &v, &x);
addedge(u, v, x);
addedge(v, u, x);
}
Bfs(n);
s = 1, t = n;
printf("%d\n", max_flow());
}
}
文章目录
  1. 1. 题目链接:
  2. 2. 题意:
  3. 3. 分析:
  4. 4. 代码: